Math 4 Honors Unit 6 Extra Practice

Name				
Date				

The problems on this worksheet are former college course and AP Calculus exam problems. All problems are NO CALCULATOR.

Math 115 / Exam 2 (March 21, 2013)

page 2

1. [12 points] Consider the graph of j'(x) given here. Note that this is not the graph of j(x).

For each of (a)-(f) below, list all x-values labeled on the graph which satisfy the given statement in the blank provided. If the statement is not true at any of the labeled x-values, write "NP". You do not need to show your work. No partial credit will be given on each part of this problem.

- (a) The function j(x) has a local minimum at x =
- (b) The function j(x) has a local maximum at x = _____.
- (c) The function j(x) is concave up at x =
- (d) The function j(x) is concave down at x =
- (e) The function j'(x) has a critical point at x =_____
- (f) The function j''(x) is greatest at x =

The graph of the derivative of a function g is shown below. Use the graph of g' to answer the following questions about g. [NOTE: The graph of g is not shown.]

Graph of g'

- (a) Where does g have stationary points?
- (b) Where does g have local maxima? Local minima?
- (c) The graph of g' has a local maximum at x = 3.8 and a local minimum at x = 7.4. What do these facts say about the graph of g?
- (d) Is g concave up or concave down at x = 5? At x = 8? Justify your answers.

OVER →

3. Let R be the region in the first quadrant enclosed by the graphs of $f(x) = 8x^3$ and $g(x) = \sin(\pi x)$, as shown in the figure above.

- 3. Let f be the function with derivative defined by $f'(x) = x^3 4x$. At which of the following values of x does the graph of f have a point of inflection?
- (A) 0 (B) $\frac{2}{3}$ (C) $\frac{2}{\sqrt{3}}$ (D) $\frac{4}{3}$ (E) 2

- 1. When is the graph of $f(x) = \frac{1}{6}x^4 \frac{7}{6}x^3 + \frac{5}{2}x^2 8x + 12$ concave down?
 - A) x < 1 or $x > \frac{5}{2}$ B) $1 < x < \frac{5}{2}$ C) $x < \frac{1}{2}$ or x > 5

- D) $\frac{1}{2} < x < 5$ E) The graph is never concave down

- 3. Let g be the function defined by $g(x) = x^4 + 4x^3$. How many relative extrema does g have?
 - (A) Zero (B) One
- (C) Two
- (D) Three